Action oxydante des antiseptiques et des désinfectants usuels 1°ST2S 2011

I. Les réactions d'oxydoréduction

Pour les antiseptiques et les désinfectants usuels, les couples Ox/Red pour lesquels le principe actif joue un rôle d'oxydant sont :

CIO⁻/CI⁻

CIO⁻/Cl₂

 H_2O_2/H_2O

 I_2/I^-

 MnO_4^-/Mn^{2+}

Les demi-équations d'oxydoréduction de ces couples sont les suivantes :

$$ClO^{-} + 2 H^{+} + 2 e^{-} = Cl^{-} + H_{2}O$$

$$2 \text{ ClO}^{-} + 4 \text{ H}^{+} + 2 \text{ e}^{-} = \text{Cl}_{2} + 2 \text{ H}_{2}\text{O}$$

$$H_2O_2 + 2 H^+ + 2 e^- = 2 H_2O$$

$$I_2 + 2 e^{-} = 2 I^{-}$$

$$MnO_4^{-} + 8 H^{+} + 5 e^{-} = Mn^{2+} + 4 H_2O$$

Certains de ces principes actifs correspondent à la forme « réducteur » d'autres couples, c'est le cas de l'eau oxygénée : $O_2 / H_2 O_2$.

La demi-équation d'oxydoréduction est :

$$O_2 + 2 H^+ + 2 e^- = H_2O_2$$

Exemple : réaction entre l'ion permanganate et l'eau oxygénée :

$$[MnO_4^T + 8 H^+ + 5 e^T = Mn^{2+} + 4 H_2O] \times 2$$

$$[H_2O_2 = O_2 + 2 H^+ + 2 e^-] \times 5$$

 $2 \text{ MnO}_4^- + 5 \text{ H}_2\text{O}_2 + 6 \text{ H}^+ \rightarrow 2 \text{ Mn}^{2+} + 8 \text{ H}_2\text{O} + 5 \text{ O}_2$

II. La dismutation de l'eau oxygénée

Les couples mis en jeu dans cette réaction sont : H₂O₂/H₂O et O₂ / H₂O₂.

Dans le couple H₂O₂/H₂O l'eau oxygénée est l'oxydant :

$$H_2O_2 + 2 H^+ + 2 e^- = 2 H_2O$$

Dans le couple O₂ / H₂O₂ l'eau oxygénée est le réducteur :

$$O_2 + 2 H^+ + 2 e^- = H_2O_2$$

Une réaction dans laquelle la même espèce chimique est à la fois l'oxydant et le réducteur est une dismutation.

La réaction de dismutation de l'eau oxygénée est une réaction d'auto-oxydoréduction.

Réduction : $H_2O_2 + 2 H^+ + 2 e^- = 2 H_2O$

Oxydation : $H_2O_2 = O_2 + 2 H^+ + 2 e^-$

 $2 H_2O_2 \rightarrow 2 H_2O + O_2$

Cette réaction de décomposition est favorisée par la lumière et la chaleur.

La manipulation d'une eau oxygénée concentrée est très dangereuse, elle peut provoquer de graves brûlures.

III. Le danger de l'eau de Javel en présence de solutions acides

Les couples mis en jeu sont : ClO⁻/Cl₂ et Cl₂/Cl⁻.

Réduction : $2 \text{ ClO}^- + 4 \text{ H}^+ + 2 \text{ e}^- = \text{Cl}_2 + 2 \text{ H}_2\text{O}$

Oxydation : $2 \text{ Cl}^- = \text{Cl}_2 + 2 \text{ e}^-$

 $CIO^{-} + 2 H^{+} + CI^{-} \rightarrow CI_{2} + H_{2}O$

Le mélange d'une eau de Javel avec une solution acide, qui apporte des ions H^{\dagger} provoque un dégagement de gaz dichlore Cl_2 extrêmement toxique.